
DOCUMENT RESUME

ED 098 942 IR 001 318

AUTHOR Peelle, Howard A.
TITLE A Generalized Learning Game in APL.
PUB DATE 2 May 74
NOTE 10p.; Paper presented at the Annual Meeting of Shared

Educational Computer Systems (New Paltz, New York,
May 1974)

EDRS PRICE MF-$0.75 HC-$1.50 PLUS POSTAGE
DESCRIPTORS Computer Programs; *Computers; Computer Science;

*Educational Games; *Game Theory; *Programing
IDENTIFIERS *APL; A Programing Language

ABSTRACT
The computer programing language API is used to

describe a ',learning,' gamer and the functions developed are
generalized to extend to a class of rules. (Author/WH)

s PARTMF %et OF .4F A, r.
gpurpriON A Air;
VATIOVAL tristrfuTE Or

e01.)CA 1'104VEN 4
.

.r.F 4, - .4% !A' \ ' ., -.t
.tF'N

i ctoo

A Generalized Learning Game in APL

Howard A. Peelle
University of Massachusetts

ABSTRACT

APL is used to describe a "learning" game, generalized to a class of rules.

INTRODUCTION

Using a programming language as a conceptual framework for describing

topics has powerful implications for education--yet this approach is virtu-

ally unexplored. The rewards for using a succinct and executable notation

like APL are found in simple, clear expressions which often yield insights

about the underlying nature of a topic. (See references [13 [53) APL is

particularly well-suited for describing topics involving interactive pro-

cesses, such as those encountered in gaming.

In this paper, APL is used to describe a simple learning, process in a

computerized gaming context. A game provides a good environment for demon-

strating learning by computer. Generally, games have well-defined rules and

objectives, narrow enough domains of discourse, and clear criteria for eval-

uating performance. The meaning of "learning" is, of course, limited to the

game environment and is usually defined in terms of improved performance on

a specified task--such as making winning moves.

004:

THE GAME OF "LAST-ONE-LOSES"

The game chosen here to illustrate learning by computer is "LAST-ONE-

LOSES"--a variant of the ancient intellectual game of NIM. LAST-ONE-LOSES

is a two-person, zero-sum (win or lose) game with complete information which

involves removing objects from an initial pile of objects. The rules are

simple: One player moves first and may take 1 or 2 or 3 objects from the

pile; the second player moves next, likewise taking I, 2, or 3 objects. The

players alternate moves in this fashion until there is only one object re-

maining. Then, whoever must take the last one loses!

There exists an optimal strategy algorithm for LAST-ONE-LOGES; that is,

from the start of the game, one of the players can always make moves which

guarantee a win. Before continuing, the reader is invited to discover (and p

CY)
express!) the optimal strategy for this game.

0 The prior question is: Row does one formally represent this game--its

interactive processes, simple s rategies, and mechanisms for learning?

11

Cle

2

REPRESENTING TaE GAME

To begin with, the basic interactive framework for two players to com-

pete in this game of LAST-ONE-LOSES is embodied in the program below.1

V LASTONELOSES
El] PRINT EGGS+?20
[2] MAKE:MCIVE+0
[3] PRINT EGGS+EGGS-MOVE
[4] -TWIN IF EGGS=1
[5] -oLOSE IF EGG3<1
[6] NEXT:MOVE.+
[7] PRINT EGGS+EGGS-MOVE
[8] +LOSE IF EGGS=1
[9] +WIN IF EGGS<1
[10] +MAKE
[11] WON THIS GAME.'
[12] 4-0

[13] LOSE: 'YOU WON THIS GAME.'
V

V PRINT EGGS
[l] (EGGSrO)p0

V

Note that here the objects in the
game are named EGGS.

At start of the game, the number
of EGGS is random.

The messages on lines [11] and [13]
are expressed from the point of view
of the first player.

PRINT displays the appropriate number
of goose-EGGS.

Here, the role of the computer is primarily that of mediator. It facilitates

the playing of the game and announces the winner at the end of the game.

For the computer to participate directly in the competition ss one of the

players, the following editing change is needed.

VLASTONELOSES[2]MAKE:04-MOVE+COMPUTERV

Also, a function must be developed to generate the COMPUTER': MOVE.

Writing a function which makes legal moves at random is easy:

V MOVE+COMPUTER
(1) MOVE+EGGS1 ?3

V

Note that the minimum of EGGS and ?3 en-
sures that the resultant MOVE is never
larger than the number of EGGS available.

However, as most children will quickly articulate, this function repre-

sents an inferior strategy. It makes "dumb" moves in the most obvious situa-

tions; it does not even remember its mistakes; and, clearly, it does not im-

prove with any consistency from game to game. A function which learns as it

plays would certainly be more interesting.

'Please observe that this program has well as others to follow) is de-
signed to be as simple as possiblewith minimal concern for efficiency but
high priority on readability. N.B. sub-function IF used in branching state-
ments:

V BRANCH4-LINF IF CONDITION
[1) BRANCH÷CONDITIONILINE

V

LEAPrINC
t,

. 4

0 0 'I

One trivial kind of learning involves avoiding losing sequences. Of

course, the COMPUTER could be programmed to store all sequences of moves for

every game it played, to search through those sequences for one which occurred

before, and -- if it found a losing sequence -- to be sure not to repeat it.

This is a cumbersome learning scheme, although surely effective in the long

run.

Another approach to machine learning involves building in some 'intelli-

gence' beforehand with a structure capable of adapting itself based on 'experi-

ence.' (See reference [6] for details.) Such an "adaptive structure" provides

a way of representing information about a game and utilizes rules for making

changes in that information.

AN ADAPTIVE STRUCTURE

In order to build an adaptive structure for the game of LAST-ONE-LOSES,

first a global variable is created: CUPS+444 3P13 (I call the variable CUPS

because one can conceptualize this matrix as four paper cups, each column con-

taining the numbers 1 2 3.)

CUPS

1 1 1 1
2 2 2 2
3 3 3 3 OW 1 CUP 2, CUP 3 CUP

Next, a function must be designed to use the CUPS structure with a rule for

making a move. The rule is in two steps:

Step 1: Determine WHICH column of CUPS to use according to the current
number of EGGS (as shown below):

EGGS 1 2 3 4 5 6 7 8 9 10 11 12 13 14

WHICH 1 2 3 4 1 2 3 4 1 2 3 4 1 2 . . .

Step 2: Then, PICK one of the numbers at random from that column (CUP).

This rule can be embodied in a new definition of the COMPUTER function.

Note that Step 1 is expressed on lineMOVE.-COMPUrER [1] and Step 2 on line [3]. The restCl] CUPS -CUPSE;a/O+DETERM.TNE EGGS)
of the function deals with the case[2] 4.RANDUM3 IF Aicup=o
of a CUP with all zeros.

(33 MOVE4-nig+PICK (CUP*0)/CUP
[4] 4.0 WHICH and MOVE record for later refer-
(51 RANDUMB:MOVE4-EGGSli3 ence the actual numbers used to goner-

O ate a MOVE.

Where sub - function DETERMINE le:

and sub-function PICK is:

WHICH*DETERMINE EGOS
E13 wircs.-1ftn41) isccs-1

ONE4-PICK MANY
C13 ONE4-MANYE?oMANY4.,MANY)

0

3

e ,t,d t 11.F

Now the program which accomplishes the adaptive learning can be defined.

The adapting process is simply: "discard" the last MOVE which led to a loss.

V LEARN This LEARN program replaces with a 0
[1] CUPS[aalfg;QUE3'0 the number in the column of CUPS WHICH

V represents the last (losing) moyE.

Finally, editing the main LAST-ONE-LOSES program will allow the COMPUTER

to LEARN after each game it loses :l InAsrosszosssillo &EAR& V

LAST-ONE-LOSES now exhibits learning.

LASTONELOSES

0

1

0

:

0
2
0

0:

0
3
0

0:

0

0

0

0

0

0

0 0

0 0

3
0 0

0 0

2
0 0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
YOU WON THIS GAME.

CUPS After losing the game, the
adaptive structure CUPS ip

1 1 1 1 modified. Note that the last

2 2 2 2 MOVE (3) is removed from CUP I:

0 3 3 3

1To be more rigorous, i.e., to ensure that learning occurs only immedi-
ately after a game which COMPUTER lost but could have won, some additional
editing changes are recommended. See Appendix for complete displays of all

functions.

LA;;TONELOSES

0
3
0

0:

0
2
0

0:

0

0

0

0

0 0

0 0

1

0 0

1

0

0

0 0 0

0
IOU WON THIS GAME.

Eventually, the adaptive structure becomes:

CUPS

0 I 0 0

0 0 2 0
0 0 0 3

00t

Again, CUPS has been adapted to:

CUPS

1 1 1 1

2 2 2 0

0 3 3 3

From that point on, COMPUTER will make the optimal MOVE; that is, it will

win whenever a win is possible.

THE OPTIMAL STRATEGY

Some insights can be drawn from the final state of the adaptive

structure. Specifically, the pattern which emerged in CUPS reveals the

modular nature of the game, and hence, provides a clue to an expression

for the optimal strategy. The winning MO E(st any time in the game when

forcing a win sequence is possible) it given by the expression 411:CGS-1

where EGGS is the number of objects remaining. When a win is not

guaranteed (the other player has a ftrced win), this expression yields

0. Then.NOVIrmight as-lwell be random and can be expressed as itaGSL?3

Defined as a single functien, the optimal strategy is:

V MOVEN-OPTIMAL
[1] MOVE4-41EGGS-1
[2] +0 IF MOVE*0
[33 MOVS.4-EGGS L?3

% e

TEACHING THE COMPUTER

With the existence of an optimal strategy function, one might think

of using it to TEACH the COMPUTER. What better way to demonstrate

machine learning than to have one computer program train another!

After supplanting the OPTIMAL function in LAST-ONE-LOSES,

VLASTONELOSESE6)NEXT:MOVE+OPTINALV

the process of learning via an adaptive structure may be automated by the

7ollowing TEACH program:

V TEACH HOWMANY
C13 GAMES+0
[2] PLAY:LASTONELOSES
[3] -*PLAY IF HOWMANY>GAMES+GAMESti

V

One might want 'to revise the LAST-0111-LOSI$ Imps* to occlude unnecessary

output and to record wins/losses, thusly:

V LASTONELOSES
[1] EGGS+?20
[2] MAKE:MOVE+COMPUTER
[3] EGGS+EGGS-MOVE
[4] +WIN IF EGGS=1
[5] +LOSE IF EGGS<1
C63 NEXT:MOVE+OPTIMAL
E73 EGGS+EGGS-MOVE
C83 +LOSE IF EGGS=1
C93 +WIN IF EGGS<1
[10] +MAKE
[11] WIN:RECORD+RECORD.1
[12] +0
[133 LOSE:RECORD+RECORD.-1
[14] LEARN

V

RECORD4-10

Note that the global variable
RECORD must be initially specified
elsewhere

11)
10)

0
4

Wz

CIS1 COCf 1:LE

Now, for those who wish to examin.. patterns of learning in more

detail -- perhaps drawing analcees with biological learning -- "learning

curves" can be readily produced. Based on values recorded during the

TEACHing, a two-dimensional view of the COMPUTER's learning can be

graphed:

TEACH 50

GRAPH RECORD

Er
nor
cc=
normcc

r rrprpro
mccrrmir
croprcalrm
ocurarrirrr
rcnrcrarrcor
craircorccrcer
rcarcrocornrco

P porrprrencrccror
c ocroroccncoarcarror
ODCOCOOPOCCDPOPOODOCCOCC

DO coccomccococccrcrccormo
occ coccoccocococccoororrrncco
0000 onomocuccrocorlormoconoco
013000 0003000000CDOODWOC000000COC
000000 000000000C00C0CC0000000000000
DOCCOCCOD 0 c 00000000000COCCOCODOOPIXOCOCCP
COCCOCDC000000 ODDCDOOODOOCCETCOCODOCOCOPCOMO
COCOCOCCOCOODOC C ococcoccomoccccarconcrpcmccm
00000000000000DOCC00000000000000000POCCOCCOGUTC00

The GRAPH function used is*

V GRAPH RECORD
[1] NET4-4.\RECORD
[2] ADJUSTED.1+NET-L/NET
C 3] T[1+(tti/ADJUSTED).".sADJUSTED]

V

7

N.B. The +\
sum-ocomt foulIo
used on Itite
is not port of

IBS RIM
Ptointra viaduct.

8
00

GENERALIZABILITY

The APL functions developed so far can be generalized to extend to a

claw, of rules. Changes in the rules of LAST - ONE - LOS'S can be handled simply

by substituting expressions in terms of a variable N -- where the integers a

are allowed in any give MOVE. Specifically, the functions OPTIMAL, COMPUTER,

and DETERMINE need only substitude N for 3 and N41 for 4. (See Appendix for

complete function displays.) Then, assuming that the appropriate global vari-

ables are specified beforehand,
Ar43

CUPS. -4(AN-1 0)oxN

one is ready to play a generalized "learning" game.

CONCLUSION

This is but one topic--the topic of machine learning--which can be taught

using a programming language as a conceptual framework. Many other topics are

suitable for this pedagogical approach, not only topics from computer science

and game theory, but also psychology, linguistics, statistics, social sciences,

physical sciences, business, and ecology. Most fruitful are those topics which

require explicit expression of interactive processes or models.

The challenge to educators, then, is to identify such topics and to lead

students to better understandings through using A Programming Language.

REFERENCES

[1] Berry, P. et al. "APL and Insight: The Use of Programs to Represent
Concepts in Teaching," IBM Tech Rpt. #320-3020, March, 1973.

[2] Iverson, K. E., "APL in Exposition," IBM Tech Rpt. #320-3010, January,
9/2.

[3] Iverson, K. E., "APL as an Analytic Notation; Proceedings, APL V Con-
ference, Toronto, May, 1973.

[4] Papert, S., "Teaching Children Thinking," MIT LOGO Memo #2, October,
1971.

[5] Peelle, H., "THE COMPUTER GLASS BOX: Teaching Children Concepts With
APL," Vol. XIV, No. 4, Educational Technology, April, 1974.

[6] Block, H. D., "Learning in Some Simple Non-Biological Systems," American
Scientist, March, 1965.

Lti

111
121

7 LASTONP:',07r;"IVP
Pac:7.720

!.*AKy:.!nv.r4rTm7
r31 PIG..7*FGGS-""0"F
F41 *AITV TP
r51 4.1,0:1,7 T.7 pv7r.cl

16 3 NPXT:'inVP.-Op'* T"At,

171 ^G ^64-7.7G-"An7r

18] 44,0.7F TP Paar=1
rq] -*WIN /7 PC/r'41
1101 **MP
r 111 wry:Rprncip.77(!n9n.,
1123 T.PAP"ITV7*OPP4-0
113] 0
r143 L(1:7:vr,77opp..?Tr.np . 1

[is] LEARN
V

V "01/P*COMPUTFP;WHTCH;CTP
fll (711P*.CUP.q;WilICR*DRTFR"INE 5.1(;01
12] *PANPYW? TPA/CUP:0
r TEARNING*OV*1
(41 "f0VE*PICK(CqP*0)/C!IP
f53 WYLCU4-WITCH
161 1.T.E,P0-!4OVF p ""'A(7" e7/1"'
173 ri] pr,A?:rAr-norr,
r81

111

PANPUMBCIOVP*PIOSi?N 121
7

V :!qTC,T*DETP.T4TP7 FGgs 2

;71/CY4-1+(!!+1)147t715-1 [11
c7 12]

v ()NP.-PTCK i$4Nv

nNE.0.1Ann:W*A7Y*.'fANY]

7

V

12]
V f!')VP4-0PTI"AT,

"()7E4-(N.1-1)1PG1:7-1
7

.0 IP aTVP:0
*1011F*FaGSL?7

7 V

113
121

v YPANCR*LY1P TF (!nNniTroN 131
BRANCH*CONDTTION/LTNE 7

+"L A!' IF 04(7/1"r77447,1""-1

LPA'?.7

APO rF '?"7"=1.1.7.74-0
!,!,1..(7777-cm-1.0

::7TUP
RECO7?P4-0
C7PO4-4(V1.1 0)007447

GRA!IY pFrp7,!,:m57,;AnJw-1 r9
vrT4.4.\nr,:.opp

ADJgrm7n..-1+nrg'-[/N.7m
n'r1+(1,1r/Avvr-)0.5AnJwzmr:n1

